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Renormalized Theory of the Time-Dependent Pair 
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A classical renormalized theory of a time-dependent pair-distribution 
function (TDPDF), previously introduced by Oppenheim and Bloom, is 
presented. An equation of motion for the TDPDF is derived in which the 
memory function of the system appears. This is then split into a part which 
contains only static correlation functions and a part which describes the 
dynamics. The mean field approximation is discussed in some detail and 
contact is made wire the theory of Oppenheim and Bloom. 

KEY WORDS: Renormalized kinetic theory; correlation functions; time- 
dependent pair-distribution function. 

1. INTRODUCTION AND S U M M A R Y  

In  the  course  o f  deve loping  their  theory  o f  nuclear  magne t ic  re laxa t ion  
( N M R )  in gases and  l iquids some fifteen years  ago,  Oppenhe im and  Bloom (1) 
found  it convenien t  to in t roduce  the concept  o f  a t ime-dependen t  pai r -  
d i s t r ibu t ion  funct ion  ( T D P D F ) .  F o r  a classical  gas, which is the case o f  
p resen t  interest ,  i t  is defined as the  fo l lowing cor re la t ion  func t ion :  

g( r l r2 ,  r l ' r 2 ' ;  t)  

= ( ~  8 [ r l -  r~(0)] ~ [ r 2 -  rB(0)] ~ [ r ~ ' -  r~(t)] 8 [ r 2 ' -  rB(t)] ~ (1) 

where  r l  and  r2 are  the  coord ina tes  o f  two par t ic les  o f  the system a n d  the 
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angular brackets symbolize an average over an equilibrium ensemble. 
Physically, the TDPDF can be interpreted as the probability that the coordi- 
nates of the two particles are rz' and ra' at time t given that their values were 
rl and r~ at a previous time, e.g., t = 0. 

In their paper, ~z~ Oppenheim and Bloom gave an approximate evaluation 
of (1). Briefly stated, their method is based on an expansion of the dynamics 
of the system to a constant-acceleration approximation (CAA) coupled with 
the requirement that the symmetry properties of g(rlr2, rl'r2'; t) be satisfied. 
The net result of this approximation is the factorization of the TDPDF into 
a term involving the static pair-distribution function and a term that describes 
the dynamics of the system as if the particles were free. This fact was also 
clearly pointed out more recently by Hynes and Deutch, (2~ who showed that 
the CAA is a particular case of the generalized linear trajectory approximation. 

In the following years, the theory of Oppenheim and Bloom has been 
used rather extensively, particularly in the study of NMR problems. A review 
of this field, with references to earlier work, has been given by Bloom and 
OppenheimJ 3~ The results of such studies showed that the evaluation of the 
correlation function (1) within the CAA appeared to be accurate enough for 
the purpose of calculating the nuclear spin relaxation time T~. However, the 
usefulness of the TDPDF is not limited to NMR only; it is also the natural 
quantity in terms of which typical two-particle phenomena--such as collision- 
induced absorption--are expressed. For this reason Miller e t  al. ~ recently 
used the CAA in their analysis of collision-induced absorption spectra in a 
dilute gas and compared the result with both experiment and model calcula- 
tions. The conclusion they draw from such a comparison is that, insofar as 
the calculation of line shapes is concerned, the CAA is a poor approximation 
(particularly at low frequencies) when a realistic potential is used. While this 
is unfortunate, in view of the considerable simplification introduced by the 
CAA in the evaluation of the correlation function (1), it is not an unexpected 
result. In fact, as pointed out by Oppenheim and Bloom in their original 
article, tx~ the CAA is expected to be a good approximation only when the 
intermolecular potential is slowly varying and head-on collisions are negligible. 
At the same time, the wide range of phenomena to which a knowledge of the 
TDPDF is relevant makes it seem desirable to subject this particular correla- 
tion function to further study. 

It is the purpose of this paper to propose a different theory for a time- 
dependent correlation function, which is a slight generalization of the TDPDF 
defined in (1), but which reduces to it in the appropriate limit. More precisely, 
the following time-dependent correlation function is considered: 

C(12, 1'2'; t ) -  ( ~ B  811-  ~(0)1 812-  fl(O)] 811'-  ~(t)] 812 ' - f i ( t ) ]~  
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where 1 -= (rl, pl) is a "field" point, ~(t) -= (rz(t), pz(t)) are the phase-space 
coordinates of particle 1, and similarly for the remaining labels. It is therefore 
obvious that (2) is just the extension of the TDPDF to phase space; for 
simplicity this extension shall be given the same name. 

The main difference between the present theory and the Oppenheim- 
Bloom theory is that in the present evaluation of C(12, 1'2'; t) no approxi- 
mations will be made at the level of the equations of motion of the particles. 
Rather, an exact equation of motion for the correlation function itself shall 
be derived, and then approximations to this equation are studied. In so doing, 
it will be seen that the present theory is renormalized in the sense that the bare 
interaction no longer appears. 

Section 2 introduces the requisite definitions and presents a calculation 
of certain thermodynamic averages which are relevant to later developments. 
These averages are static correlation functions whose evaluation is straight- 
forward once the equilibrium ensemble has been specified. In principle, both 
the canonical and the grand canonical ensembles are suitable for this task. 
However, because of mathematical difficulties concerning the invertibility of 
certain static correlation functions in the canonical ensemble, (5) the expres- 
sions are couched mainly in terms of the grand canonical ensemble. 

In Section 3 an equation of motion for the correlation function (2) is 
derived. As much of the recent work on modern kinetic theory has shown, 
successively higher order phase-space correlation functions obey a hierarchy 
of equations which are analogous to the BBGKY hierarchy (6~ of classical 
kinetic theory. Several methods have been devised to derive closed equations 
of motion for various correlation functions of interest. There are features 
common to the various methods, but it would be out of place to comment on 
them here. Suffice it to say that in this section the method used by Mazenko 
in his theory of self-diffusion (8~ and of the density autocorrelation function(7~ 
will be closely followed. The end result is that the equation of motion for the 
TDPDF is expressed in terms of the memory function, which in turn can be 
written as a sum of a static part Z (s~ and a collisional part Z (c~ [see Eq. (32)]. 
The latter contains the dynamics of the system and has a rather complicated 
structure; the former, on the other hand, contains only static correlation 
functions, which can be evaluated explicitly. As is well known, one of the 
advantages of introducing the memory function is that it is expected to be a 
better behaved quantity than the correlation function itself, thus affording a 
more systematic and secure way of making approximations. 

Recognizing the complicated structure of the collisional part of the 
memory function, an approximation is employed in which Z (c~ is neglected 
while yjs~ is kept intact. The resulting approximate equation for the TDPDF is 
analyzed in some detail in Section 4. As it turns out, this equation no longer 
contains the bare potential explicitly, but rather the mean force potential 
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appears, and in this sense the present theory is renormalized. Thus, in this 
approximation, the pair of correlated particles appear to be free-streaming 
in the presence of a mean field set up by the remaining particles of the system. 
This is therefore a description of the behavior of the TDPDF which is, 
conceptually, at the same level as the Vlasov-Zwanzig equation for the 
singlet distribution function. ~9-1~ 

In the course of discussing the implications of the approximate equation, 
contact is also made with the Oppenheim-Bloom theory of the TDPDF. 
Specifically it is shown that to lowest order in the density expansion the 
present theory reduces to the starting point of the Oppenheim-Bloom method 
for evaluating the TDPDF. In particular, the free-particle case is trivially 
seen to give the same (exact) result. Of course, as should be clear from what 
has already been said, the present method of evaluating the correlation func- 
tion is radically different from the previous theory and much more general in 
scope. 

Finally, in the last section, a few remarks are made on a plan for attacking 
the problem of solving the approximate equation in general, by taking 
advantage of the form of the eigenfunctions of the two-body Liouville 
operator. ~11~ 

2. D E F I N I T I O N S  A N D  STATIC  C O R R E L A T I O N  F U N C T I O N S  

Consider a system consisting of N classical monatomic particles, with 
the Hamiltonian 

p2 + i ~N 
H v(ra rB) (3) 

where r~ and p~ are the phase-space coordinates of the ~th particle and 
v(r~ - ra) is the usual pairwise additive central potential." The system is 
assumed to be in (absolute) equilibrium in a volume V at a temperature 
T = (k~fl)-1, where kB is the Boltzmann constant. 

In the present theory of the TDPDF the fundamental field is the phase- 
space density associated with two tagged particles, say particles 1 and 2, and 
defined as 

r(12) = [ N ( N  - 1)] 1'2 3(1 - 1') 3(2 - 2') (4) 

where the unprimed labels refer to points in phase space (external variables) 
and the primed ones to the coordinates of the particles (internal variables). <a> 
In addition to the fundamental field (4), it will also be necessary to consider 
the field 

N 
r(123) = r(12) ~ 3(3 - a') (5) 

r 
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which correlates particles 1 and 2 with a third one. In a similar fashion higher 
order fields can also be taken into account. 

Indicating the equilibrium averages by angular brackets, and with the 
understanding that N = ( N )  when working in the grand canonical ensemble, 
the averages of  the fields (4) and (5) are 

(F(12)) = [ N ( N -  1)]-11enZg(rl - rz)r162 (6) 

and 

(F(123)) = [ N ( N -  1)]-~t2nag(rar2ra)r162162 (7) 

where n is the number density, r is the absolute Maxwellian 

[ f l  ]a/2 exp(-~--~p~ ) (8) 

and the pair and triplet distribution functions are introduced as 

N 

n 2 g ( r l - r 2 ) =  ( ~ = 1 3 ( r l - r ~ ) ( r 2 - r a )  ~ (9a) 

and 

As is clear from (6) and (7), the equilibrium averages of  these fields vanish 
in the thermodynamic limit, N - + o o ,  V - * m ,  with n = N / V =  const. 
Because of this, such average values can be neglected when considering the 
correlations between the fields defined above. Thus, working now explicitly 
in the grand canonical ensemble, the four-point correlation function 
C(12, 1'2') is given as 

C(12, 1'2') = (F(1'E')F(12)) 

= ~-~ ~ di. . .d. ,V{exp[-~It(i , . . . ,R)l} 

x N ( N  - 1) 3(I' - i) 3(2' - 2) 3(1 - i) 3(2 - 2) (10) 

where E(fl, ~, V) is the grand canonical partition function, ~ = e au is the 
fugacity, and H(1,..., N) is the Hamiltonian (3). Carrying out the average 
indicated in (10), we obtain 

C(12, 1'2') = n2g(rl - r2)r162 3(1 - 1') 3(2 - 2') (11) 

Higher order static correlation functions can be evaluated in a similar 
manner. Thus, for example, C(123, 1'2') is given as 

C(123, 1'2') = (F(1'Z')F(123)) 

= n3g(r~rzra)r162162 3(1 - 1') 3(2 - 2') (12) 
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There is another quantity which will be required in the sequel; this is the 
inverse of the four-point correlation function (11), i.e., a function C-1  such 
that 

- l ' )  3(2 - 2')  = f d3 d4 C - 1 ( 1 2 ,  3(1 34) C(34, 1'2') 

f d 3  d4  C(1'2', 34)C-1(34, 12) (13) 

Recalling the expression (11), it is easy to check that such an inverse is given 
explicitly by 

8(1 - 1') 3(2 - 2')  (14)  
C-1(12, 1'2') = nZg(r ~ _ r2)}(pl)}(p2) 

with the restriction that when the potential has a hard core the inverse (14) 
is defined only for distances (rl - r2) and (r~' - r=') greater than the hard- 
core diameter. 

3. T I M E - D E P E N D E N T  C O R R E L A T I O N  F U N C T I O N S  A N D  
E Q U A T I O N S  OF M O T I O N  

The T D P D F  defined in (2) can be rewritten, in the notation of Section 
2, as 

C(12, 1'2'; t - t ') = (P(1'2', t')P(12, t))  (15) 

It depends only on the time difference because the equilibrium system is 
assumed to have time-translational invariance. Introducing the Liouville 
operator L by 

N 

r(1 ... N) = y, L(~) + �89 ~ r l (~ )  
~=i ~ 

iL(~) = P~.--~-~ (16) 
m ~r~ 

i L l ( ~ )  - -  - v ( r o  - r . ) .  0p~ 0~B 

and using Koopman's  operator e TM to express the time-displaced fields in (15), 
the Laplace transform of the TDPDF,  

C(12,  r2 ' ;  z) 

f: = - i  d ( t  - t ' ) {exp[ i z ( t  - t')]}C(12, 1'2'; t - t ') ( Imz > 0) (17) 
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can be written as 

C(12, 1'2'; z) = - i  d ( t  - t ' )  (r(l'2'){exp[i(z + L ) ( t  - t')]}r(12)) 

1c(12,1 '2 ' )-1 ~r( l '2 ' )  L r(12))  (18) 

Here C(12, 1'2') is the initial value (11) of the TDPDF, with the convention 
that when time or frequency is not explicitly shown as an argument, the 
initial value of the correlation function is understood. 

Following Mazenko, ~7'~ it is possible to show that the effect of the 
Liouville operator on the field (12, 1' ... N')  (where the internal variables are 
now explicitly shown) is to transfer attention from the internal to the external 
variables, i.e., 

L(I '  ... N')F(12, 1' ... N') 

= -L(12)1"(12, 1' ... N') - f d3 [L~(13) + Lx(23)]Y'(123, 1' ... N')  (19) 

Using this relationship, and introducing a five-point time-dependent correla- 
tion function by 

C(123, 1'2'; z) = (I'(l'2')[L/(z + L)]I"(123)) (20) 

it is easy to rewrite (18) in the form 

[z - L(12)]C(12, 1'2'; z) 

- f d3 [L1(13) + L1(23)]C(123, 1'2'; z) = C(12, 1'2') (21) 

This equation is the first of a hierarchy of exact equations obeyed by each 
time-dependent correlation function and involving successively higher order 
ones. Thus, for instance, the derivation leading to (21) can be repeated for 
C(12, 1'2'3'; z) with the result 

[z - L(12)]C(12, 1'2'3'; z) 

-- f d3 [Lx(13) + L~(23)]C(123, 1'2'3'; z) = C(12, 1'2'3') (22) 

which involves the six-point correlation function C(123, 1'2'3'; z) and the 
initial value C(12, 1'2'3'). The latter can be evaluated by using the method of 
Section 2. 

In order to ease the notation, an operator format which has already been 
introduced in the literature (5.v,8> is employed. Briefly stated, it consists in 
regarding an arbitrary correlation function C(1 -.. l, 1' ... m'; t) as a matrix 
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element (1 ... l [Czm( t ) l l '  ... m ' )  of  an operator acting on a linear vector 
space. For  the present purposes, the vectors of  this space are orthonormal 
in the sense that, e.g., 

(1[1') = 3(1 - 1') and (1211'2') = 3(1 - 1') 3(2 - 2') (23) 

The reason why such a notation is convenient stems from the fact that, in 
many cases, the only important characteristic of an arbitrary correlation 
function is the number of particles l and m, which are correlated at two 
different times. 

The/-particle Liouville operator can be handled in an analogous fashion 
by letting 

(1 ... I IL,~l l '  ... I ' )  = L(1 ... l)(1 ... I l l , IV ... I ' )  (24) 

where 1 v is the appropriate unit operator. Finally, the interaction operators 
L~,z+ 1 that will be needed here are defined as 

<11L~21r2'> = f d2 L1(12)(12112211'2') 

and 

(25) 

(121L2all'2'3') = J d 3  [L1(13) + Ll(23)](12311aall'2'3') (26) 

With the help of this condensed notation, (21) and (22) can be rewritten 
as follows: 

( z  - L22)C22(z)  - L2aCa2(z)  = C22 (27) 

( z  --  L22)C2a(z)  - L2aCaa(z)  = C2a (28) 

where again the absence of the argument in a correlation function implies 
that its static value is understood. 

In order to proceed further, (27) is now written as a closed equation for 
the TDPDF,  i.e., 

[z - L22 - Z22(z)]C22(z)  = C22 (29) 

where the memory function ~22(z) has been introduced through the defining 
relation 

Y ~ ( z ) C 2 2 ( z )  = L28C3~(z)  (30) 

As mentioned in Section 1, the advantage of writing the equation of 
motion for C22(z) in terms of the memory function is that it allows a shift of 
attention to the latter, which is expected to be a better behaved quantity. 
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Moreover, by an application of  Mazenko's method (e~ to the present case it 
can be shown that these correlation functions have the symmetry properties 

C,m(Z) = - C ~ ( - z ) ,  c ,~ = C ~  (3~) 

where the tilde denotes the transposed operator. Then, operating on (30) 
with (z - L22) from the right and using (27), (28), and (31), it can be seen 
that the equation of  motion of the T D P D F  becomes 

(z L22)C2z(z) r~(s) 
- -  - -  t~2z + Y~2(z)]C22(z) = C z 2  (32) 

where 

•(s) 2~ = L23C82C~ 1 (33) 

YJ2~(z) = L23[C38(z) - C32(z)C~Z(z)C23(z)]L32C6 ~ (34) 

In other words, the memory function can be split into a static (i.e., z-inde- 
pendent) part given by (33), and a collisional part, which describes the 
dynamics of  the system. 

Equation (32) is still exact, but a glance at (34) shows that the collisional 
part of the memory function is rather complicated, since it involves higher 
order correlation functions. While, in principle, the closure of the hierarchy 
of  equations for the C~m(z) can be done at successively higher order levels, it 
seems more practical, in a first analysis, to make approximations on the 
memory function directly in (32). From this point of view, the obvious 
candidate for a first approximation is the assumption--however crude it 
might be-- that  the collisional part of the memory function vanishes. Setting 
YJ*~ = 0, we find that Eq. (32) becomes 

[z - (L ~  + X~d)lC~(z) - C ~  (35) 

It is the object of the next section to study this equation in some detail. 

4. M E A N  FIELD E Q U A T I O N  FOR T H E  T D P D F  

In order to study the properties of  (35) it is convenient to return to the 
previous notation. This is done by taking matrix elements with <121 and I1'2') 
and recalling (23)-(26). The result is that (35) now reads 

[z - L(12)]C(12, 1'2'; z) - f d3 ... d7 [L1(13) + L1(23)] 

x C(123, 67)C-1(67, 45)C(45, 1'2'; z) = C(12, 1'2') (36) 

x,(sn can be shown to As anticipated in Section 1, the combination (L22 + ~22j 

be independent of the bare potential. There are various methods of  showing 
this, the most straightforward being to work out explicitly each term in (36). 
This can be done rather easily in the present case, due to the simplicity of the 
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static correlation functions (11)-(14), and hence a few of the intermediate 
steps are simply outlined. Denoting the second term by I(12, 1'2'; z) and 
using (11)-(14), the integrations over d4 ... d7 are easily carried out, with 
the result 

f C(12, z) (37) 
g(rlr2ra) 

I(12, 1'2'; z) = d3 [L1(13) + Ll(23)]ng~(p3) g(rl - r2) 1'2'; 

Recalling the definition (16) for the interaction part of the Liouville operator 
and using the hierarchy of equations <12) obeyed by g(rl -.. r,), the integration 
over d3 in (37) can also be performed. After some algebra (37) becomes 

I(12, 1'2'; z) = - i In g(r~ - ra) + ~ v(rl - r2) O 

-[~O-~Ing(rl-r2)+8-~v(rl-r2)].~-~z}C(12,1'2';z ) (38) 

On the other hand, the two-particle Liouville operator appearing in the first 
term of (36) is, by definition, 

L(12) = - i  ~,m[~"~"0 + a t 1  m ~r2] + i  ~rl v ( r l -  r~). (8-~1 ~ 2 )  (39) 

Thus, as a glance at (38) and (39) reveals, the bare potential disappears when 
the two pieces are combined, and instead, if the mean force potential ~2) 

WC2~(r, - r2) = - (1//3) In g(r, - ru) (40) 

is introduced, (36) can be rewritten in the compact form 

[z - L(12)]C(12, 1'2'; z) = C(12, 1'2') (41) 

Here the renormalized two-particle Liouville operator L(12) is defined as 

i L ( 1 E ) = P l  ~ P2 8 ~ W ~ 2 ) ( r l - r 2 ) . ( ~  ~ )  (42) 
m'Or--'~ + m ~3r2 c~rl 'c~p~ ~ z  

corresponding to the renormalized two-body Hamiltonian 

/7(12) P12 P2~ = ~-~ + ~-~ + IV~2~(rl - r2) (43) 

It is interesting to show how the approximate equation (41) relates to the 
Oppenheim-Bloom theory. As (41) shows, the T D P D F  evolves according to 

C(12, 1'2'; t) = {exp[-itL(12)]}C(12, 1'2') (44) 

Using the initial value (11) and noticing that 

(/3/27rm) 3 exp[-/3/t(12)] = $(p~)6(p2)g(r l  - r~.) (45) 
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we can rewrite (44) in the following form:  

C(12, 1'2'; t) = n 2 {exp[-/3/~(12)l}{exp[-it[,(12)]} 3(1 - 1') 3(2 - 2') 

g2 f d i  d2 {exp[-B/7(i~)]} 8(1 - i) 8(2 - 2) 

x {exp[-it[,(i2)]} 8(i - 1') 8(5 - 2') (46) 

where the activity 

y = ~(27rm/[3h2) a/2 (47) 

has been introduced and h is Planck's constant. Since C is time-reversal 
invariant, integration of  both sides over the momentum variables in Eq. (46) 
gives 

v 1. f v ," G(rlr2, rl  r2 , t )  = dpl  dp2 dpl '  dp2' C(12, 1 2 ; t) 

= [n]Z ~ f di dT. {exp[-fl/-7(i~)]) 8(rl - rl) 8(r2 - ~2) 
\ y ]  h 6 

x {exp[itF-(i~)]} 8(r~' - r~) 8(r2' - ra) (48) 

A familiar cluster expansion ~13) can now be utilized to derive the low-density 
expression for G. With (n/y) 2 = 1, n = (27rm/flh2)a/2g, and WC2)(rl - r2) - 
v(rx - r2), Eq. (48) becomes 

G(rlr2, rl 'r2';  t) = n2{exp[ - f l v ( r l  - r2)]) f d~l  d~2 r162 

x {exp[itL(rlr~., PlPz)]} 8(r~' - rl) 8(r2' - r2) (49) 

which coincides with Eq. (37) of  Oppenheim and Bloom. C1~ Therefore the 
present theory of  the TDPDF,  as described by Eq. (41), reduces to the 
start ing point of  the Oppenheim-Bloom theory in the low-density limit. 

Finally, it is also easy to check that  the free-particle limit is correctly 
reproduced. In order to see this, notice that  when v(r~ - r2) = 0, Eq: (41) 
reduces to 

[ z+ i l~m 0rl + m or2!J 

= n2de(pt)ck(pz) 8(1 - 1') 3(2 - 2') (50) 

or, in the CM and relative coordinate system, 

z "[p~ a + 

= n2(~M(.po)q~#(p) 8(rc' - rc) 8(p~' - pc) 8(r' - r) 8(p' - p) (51) 
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where (re, Pc) refers to the center-of-mass motion and (r, p) refers to the 
relative coordinates and momentum, defined by the transformation 

r l  = rc + �89 P l  = �89 + P 

r2 = rc - �89 P2 = �89 - P 

and ~u(Pc) and ~.(p) are the absolute Maxwellians for mass M = 2m and 
tz = rn/2, respectively. Of course, Co(z) is the free-particle value of C(z) .  

The solution of Eq. (51) is easily found to be 

Co(t)  = n2~u(pc)  8(pc' - pc) 8 r e -  r /  + ~ t  

x~ . (p )  8 ( p ' - p ) 8 [ r -  ( r ' + P t ) ]  (52) 

which, after integration over the momentum variables, gives 

2/M~3' [ M .  , 
Go(rc' rc, r ' - r ; t ) = n  tT~) ~M[-~-~.rc - c)] ( ]~)  ~u [7 (r - r)] (53) 

This result is identical to Eq. (41) of Oppenheim and Bloom. (1) 

5. C O N C L U D I N G  R E M A R K S  

A classical, renormalized theory has been presented for the TDPDF, 
which is a quantity of interest in certain problems of nonequilibrium statistical 
mechanics such as NMR (1'3) and collision-induced absorption. (4) The 
renormalization of the collisional effects is built into the theory from the 
beginning by expressing the equation of motion for the TDPDF in terms of 
the memory function of the system [cf. Eq. (32)]. This is done along the lines 
of recent work by Mazenko, (7,a) which has proven to be very successful in the 
analysis of more familiar many-body properties such as the Van Hove 
correlation function. 

Then, as a first approximation, the case in which the collisional part of 
the memory function is negIigible has been considered, resulting in an equa- 
tion of motion for the TDPDF [Eq. (41)], which is expressed simply in terms 
of the renormalized two-body Liouville operator. Thus, in this approximation, 
the free-streaming of the two correlated particles is modified by the presence 
of the mean field, much in the same fashion as the Zwanzig modification of the 
Vlasov equation for the singlet distribution function. In the low-density limit 
contact is also made with the starting point of the Oppenheim-Bloom theory, 
and the free-particle case is trivially shown to be the same. 

The description of the TDPDF afforded by the mean field approximation 
seems interesting enough to deserve further study, including a more detailed 
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compar ison  with the C A A  approximat ion  and experiment. In  particular, the 
solution o f  Eq. (41) can be found  by taking advantage o f  the fact that  the 
eigenfunctions o f  the two-body Liouville operator  are known.  (1~) However,  
the calculation is far f rom trivial and rather lengthy. I t  also involves some 
mathematical  subtleties which appear  to be interesting enough to warrant  a 
more  detailed analysis than could be presented here. For  these reasons such a 
study will be reported in a separate paper. 
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